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Learning Local Volt/Var Controllers Towards Efficient Network
Operation with Stability Guarantees

Guido Cavraro Zhenyi Yuan Manish K. Singh Jorge Cortés

Abstract— This paper considers the problem of voltage
regulation in distribution network. The primary motivation
is to keep voltages within pre-assigned operating limits by
commanding the reactive power output of distributed energy
resources (DERs) deployed in the grid. We develop a framework
for developing local Volt/Var control that comprises of two main
steps. In the first, exploiting historical data and for each DER,
we learn a function representing desirable equilibrium points
for the power network. These points approximate solutions of
an Optimal Power Flow problem. In the second, we propose
a control scheme for steering the network towards these
favorable configurations. Theoretical conditions are derived to
formally guarantee the stability of the developed control scheme
and numerical simulations illustrate the effectiveness of the
proposed approach.

I. INTRODUCTION

The deployment of a massive number of DERs in distri-
bution networks (DNs) is dramatically changing the electric
power grid. Primarily driven by sustainability and economic
incentives, DERs present additional opportunities including
voltage profile improvements and the line-loss reduction.
At the same time, DERs uncoordinated power injections or
sudden generation changes could pose challenges to system
stability and power quality. To facilitate their integration
in power grids, DERs are being provided with sensing
and computation capabilities and hence are becoming smart
agents. Further, they can exploit the flexibility of their
power electronic interface to control the reactive power
injection/withdrawal. Motivated by these observations, this
paper aims to develop reactive power controllers to regulate
voltages, also known as Volt/Var controller, for DNs.

Literature Review: Most of the control methods developed
for DNs in recent years fit in the categories of distributed
or local control strategies. In the first, DERs are allowed
to communicate and share information in a communication
network; in the second, generators use only locally avail-
able information. Distributed algorithms steer the network
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towards solutions of optimization problems called optimal
power flow (OPF) problems in which the power generation
cost, the line losses, or the deviations from the nominal
voltage are optimized [1], [2]. Nevertheless, distributed
strategies have usually precise and strict requirements on
the communication network. For instance, in many works,
each generator is required to share information with all its
neighbors in the power system. In local schemes, power
injections are adjusted based on measurements taken at the
point of connection of the power inverter to the grid [3], [4],
[5]. The goal is typically to keep voltages within safe limits.
Though simpler than distributed strategies, local schemes
have intrinsic performance limitations, e.g., they might fail
to regulate voltages even if the overall generation resources
are enough [2].

To enhance the performance of local schemes and reduce
the gap with distributed and/or optimal controllers, recent
efforts devise customized control rules using data-driven
and machine learning methods. A data set for learning
control functions can be created by solving OPF problems
using historical consumption and generation data, e.g., smart
meter data. Indeed, learning techniques were used also to
obtain fast (approximate) solutions to OPF problems. Deep
neural networks (DNNs) have been employed to predict OPF
solutions that are converted to a physically implementable
schedule upon projection using a power flow solver [6].
A graph neural network leveraging the connectivity of the
power system is trained to infer AC-OPF solutions in [7].
In [8], [9] a DNN is trained to fit not only OPF minimizers,
but also their sensitivities with respect to the problem inputs.
Piecewise linear control functions are designed in [10] given
the number of break points. Authors in [11] consider an
OPF problem whose objective function penalizes the voltage
deviations from the nominal one and the control effort. They
derive stable local controllers that steer the system toward
an approximated solution. Continuous time local reactive
power control schemes are designed in [12] to solve an
OPF problem with voltage constraints. However, reactive
power capacity limits, critical when dealing with small-size
generators, are not imposed.

Statement of Contributions: In this work, we devise a
framework for designing local Volt/Var scheme whose goal
is not only to regulate voltages but also to act as local
surrogates of OPF solvers. We advocate a two-stages strategy.
First, for each agent, a function, referred to as equilibrium
function, providing OPF solution surrogates is learned from
historical data. Precisely, such a function receives as input the
local voltage and gives as an output an approximation of the
optimal reactive power setpoint. Second, we devise a control
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algorithm whose equilibrium points (i) are asymptotically
stable, and (ii) are exactly the OPF approximated solutions
provided by the equilibrium function.

The paper is structured as follows. In Section II we model
a power distribution network and define the OPF problem
of interest. Section III describes the aforesaid two-stages
approach. Finally, numerical tests are reported in Section VI,
and conclusions are drawn in Section VII.

Notation: Lower- (upper-) case boldface letters denote
column vectors (matrices). Given a vector a, its n-th entry is
denoted as an. Sets are represented by calligraphic symbols.
The symbol > stands for transposition, and inequalities are
understood element-wise. The vector of all ones is denoted
by 1; the corresponding dimension should be clear from
the context. The operator | · | yields: the absolute value for
real-valued arguments; the magnitude for complex-valued
arguments; and the cardinality when the argument is a
set. The set of complex numbers, of real numbers, and of
nonnegative real numbers are denoted as C,R, and R≥0,
respectively. Operators <(·) and =(·) extract the real and
imaginary parts of a complex-valued argument, respectively,
and act entry-wise. Given a matrix A, an eigenvalue λ
with its associated eigenvector ξ forms the eigenpar (λ, ξ).
The norm of A is defined by ‖A‖ =

√
λmax(A>A),

where λmax(A>A) is the largest eigenvalue of A>A. This
definition coincides with the 2-norm of a matrix. The graph
of a function φ : R→ R is the set of all points of the form
(x, φ(x)), with x ∈ R.

II. POWER DISTRIBUTION GRID MODEL

Consider a power distribution network with N + 1 buses
modeled by an undirected graph G = (N , E), whose nodes
N = {0, 1, . . . , N} are associated with the electrical buses
and edges represent the electric lines. We label the substation
node as 0, and we assume that behaves as an ideal voltage
generator imposing the nominal voltage of 1 p.u. Define the
following quantities:

• un ∈ C is the voltage at bus n ∈ N .
• vn ∈ R is the voltage magnitude at bus n ∈ N .
• in ∈ C is the current injected at bus N ∈ N .
• sn = pn + iqn ∈ C is the nodal complex power at bus
n ∈ N , where pn, qn ∈ R are the active and the reactive
powers. Powers will take positive (negative) values, i.e.,
pn, qn ≥ 0 (pn, qn ≤ 0), when they are injected into
(absorbed from) the grid.

• y(v,w) ∈ C is the admittance of line (v, w) ∈ E .

Vectors u, i, s ∈ Cn collect the complex voltages, currents,
and complex powers of buses 1, 2, . . . , n; and the vectors
v,p,q ∈ Rn collect the voltage magnitudes, and their active
and reactive power injections. Denote by ze and by ye = z−1e
the impedance and the admittance of line e = (m,n) ∈ E .
The network bus admittance matrix Y ∈ C(N+1)×(N+1) is
a symmetric matrix that can be expressed as Y = YL +
diag(yT ), where

(YL)mn =

{
−y(m,n) if (m,n) ∈ E ,m 6= n,∑
m6=n y(m,n) if m = n,

(1)

and the vector yT collects the shunt components of each line.
The matrix YL is a complex Laplacian matrix, and hence
satisfies YL1 = 0. We partition the bus admittance matrix
separating the components associated with the substation and
the ones associated with the other nodes, obtaining

Y =

[
y0 y>0
y0 Ỹ

]
with y0 ∈ C,y0 ∈ CN , Ỹ ∈ CN×N . If the network is
connected, Ỹ is invertible [13]. Let Z̃ := Ỹ−1, R̃ := <{Z̃},
and X̃ := ={Z̃} ∈ CN×N . The power flow equation can be
written as

u = Z̃i + û, (2a)
u0 = 1, (2b)
unīn = pn + jqn, n 6= 0, (2c)

where īn denotes the complex conjugate of in and û :=
Z̃y0. Equation (2a) represents the Kirchoff equations and
provide the relation between voltages and currents. Finally,
equation (2c) comes from the fact that all the nodes, except
the substation, are modeled to be constant power buses. Volt-
age magnitudes are nonlinear functions of the nodal power
injections; however, using a first-order Taylor expansion, the
power flow equation can be linearized to obtain

v = R̃p + X̃q + |û|, (3)

and to express the power losses as a scalar quadratic function
of the power injections [14]

l = q>R̃q + p>R̃p. (4)

Assume a subset C ⊆ N of buses host DERs, with
|C| = C. The remaining nodes constitute the set L = N \C.
Every DER corresponds to a smart agent that measures its
voltage magnitude and performs reactive power compensa-
tion. It is convenient to partition reactive powers and voltage
magnitudes by grouping together the nodes belonging to the
same set

q =
[
q>C q>L

]>
,v =

[
v>C v>L

]>
.

Also, the matrices R̃ and X̃ can be decomposed according
to the former partition, yielding

R̃ =

[
R RL

R>L RLL

]
, X̃ =

[
X XL

X>L XLL

]
. (5)

with R and X being positive-definite matrices. Fixing the
active and reactive loads along with the active solar genera-
tion, from (3) and (4), voltage magnitudes and power losses
become functions exclusively of qC :

v(qC) =

[
X
X>L

]
qC + v̂ (6a)

l(qC) = q>CRqC + q>Cw + l̂, (6b)

where the following definitions are used

v̂ :=

[
XL

XLL

]
qL + R̃p + |û|, (7a)

w := 2RLqL, (7b)

l̂ := q>LRLLqL + p>R̃p. (7c)
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III. OVERVIEW OF THE PROPOSED APPROACH FOR DER
CONTROL

This section proposes a two-stage approach to optimally
utilize the flexibility in DER reactive powers while ensuring
the stable operation of the distribution network (DN). In
the first stage, a centralized OPF instance is formulated
to determine optimal DER reactive-power setpoints given
the non-controllable (re)active power injections across the
network. While the considered OPF formulation is convex,
solving numerous instances of it for real-time operation
may be computationally challenging. Further, the necessity
for (re)active power information from across the network
introduces communication challenges. Towards alleviating
the aforementioned concerns, we train a fleet of neural net-
works (one per DER) to (approximately) predict the optimal
setpoints, given merely local nodal voltages as inputs. In the
second stage, we develop a control scheme to steer the DER
reactive-power injections to the setpoints obtained from the
neural network outputs while formally guaranteeing stability.

A typical OPF formulation for DER dispatch would solve
for an optimal q∗C , given the tuple (p,qL), such that the stip-
ulated voltage limits and DER reactive-power capacity limits
are satisfied and a certain network criterion is optimized.
Although arbitrary cost functions could be considered, here
we consider an OPF problem that minimizes line losses. Such
an OPF can be posed as

q∗C(p,qL) := arg min
qC

l(qC) (P1)

s.t. (6)− (7), and (8a)
vmin ≤ v(qC) ≤ vmax, (8b)
qmin ≤ qC ≤ qmax, (8c)

where vmin,vmax ∈ RN are desired voltage lower and
upper limits on all the network buses, and qmin,qmax ∈
RC are the minimum and the maximum DERs’ reactive
power injections. We denote the set of the feasible reactive
power injections for the DER at node n as Bn = {qn :
qn ∈ [qmin,n, qmax,n]}. Problem (P1) is strictly convex, cf.
(6a)–(6b), and admits a unique minimizer. Moreover, the
minimizer is a function of the uncontrolled variables p and
qL, which appear implicitly in the objective function and the
constraint (8b) via (7).

In principle, solving (P1) given a tuple (p,qL) is tractable,
thanks to the problem convexity. However, due to high
penetration of renewable generation, DNs are witnessing
increased variability that requires solving numerous instances
of (P1) with limited time-budget. Aiming at tackling the
said challenge, several neural network-based approaches
have been put forth to predict approximates of q∗C with
(p,qL) being presented as the neural-network inputs [8].
Once trained, the time required for neural network inference
when presented with a new input is minimal. While this
alleviates the computational burden of solving OPFs, the
need for the network-wide quantities (p,qL) imposes a
significant communication burden for implementation. To
reduce the computational and communication complexities
simultaneously, a common approach is to deploy solutions
based on local control rules, whose performance in terms

of optimality is generally lacking. For DER reactive-power
dispatch to achieve voltage regulation, such rules [15] are of-
ten presented as piecewise linear functions of local voltages.
Designing these rules to harness efficient DN operation has
garnered recently tremendous interest [4], [11], [16].

Inspired by the recently reported success of neural-
network-based surrogates for OPF and ongoing efforts to-
wards designing local control rules for DERs, this work
proposes a two-stage approach. In the first stage, termed
learning stage, we use historical data to learn functions
that map voltages to (approximate) solutions of the OPF
problem (P1). Specifically, for each agent n ∈ C, we aim
to learn a function φn of the local voltage vn as

φn : R→ Bn, vn 7→ φn(vn), (9)

with φn(vn) providing the optimal reactive power surrogates.
Then, we would like the generators to inject reactive power
setpoints qC such that, for each n ∈ C we have

qn = φn(vn), (10)

where the voltage vn in turn depends on the reactive power
injection qC as per (6a). Hence, the graph of the function φn,
namely, points of the form (vn, φn(vn)), consists of desirable
network configurations which are surrogates of solutions
of (P1) and, for this reason, we term the the functions
{φn}n∈C equilibrium functions. The second stage, termed
control stage, aims to design local control rules which steer
the network to configurations satisfying (10) for each n ∈ C.

Remark 1. (On the need of a control algorithm): The
outcome of the learning stage are functions that map local
voltage to (approximated) optimal reactive power setpoint.
Hence, one might ask why it is not enough just to apply those
reactive power setpoints provided by the learning function.
This is the approach taken in e.g., [6], [17]. The main reason
why not is because we are considering the case in which only
a few power injections, i.e., the DERs, are controlled. Ap-
plying the OPF solution surrogates q]C = φ(vC), computed
using the voltages vC , in general, could change the voltages
to a new configuration vC(q]) 6= vC . That is, (vn(qC), q]n)
belongs to graph of φn, but (vn(q]C), q]n) does not. Hence
the new configuration is not an approximated power flow
solution. The control scheme we develop aims exactly at iter-
atively steering the systems toward configurations belonging
to the graph of the equilibrium functions. •

IV. NEURAL NETWORK-BASED SURROGATES FOR
EQUILIBRIUM FUNCTIONS

This section describes our approach to learn equilibrium
functions for each agent in C that describe the solutions
of (P1) as a function of the individual voltages. The labeled
dataset required to accomplish the desired learning task is
obtained as described next. Given that (P1) takes (p,qL)
as input, we first build a set {(pk,qkL)}Kk=1 of K load-
generation scenarios. One can obtain the aforementioned
scenarios via random sampling from assumed probability
distributions, historical data, or from forecasted conditions
for a look-ahead period. Next, the OPF (P1) is solved for
the K scenarios to obtain the corresponding minimizers
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(v(q∗C),q∗C(p,qL)). The entries for these minimizers are
then separated for each n ∈ C to obtain datasets of the form
Dn = {(v∗n,k, q∗n,k)}Kk=1, where the parametric dependencies
have been omitted for notational ease. Next, we seek to
independently learn equilibrium functions, one per node in C,
such that the elements of the respective sets Dn are close to
the graphs of the learned functions; with proximity quantified
in terms of the squared error. Specifically, using the mean
squared error (MSE) metric, the learning task can be posed
as

min
φn

1

K

K∑
k=1

|φn,k(v∗n,k)− q∗n,k|2. (11)

In addition, we impose the following conditions on each φn:
it has to be C1) differentiable, C2) nonincreasing, and C3)
with range in Bn. The motivation for these requirements will
be clear later. Since we employ neural networks to construct
the equilibrium functions, making sure that C1) − C3) are
satisfied is facilitated by choosing activation functions such
as sigmoids, tanh, and softsign. In the following, we train
the equilibrium functions using a single layer neural network
and, as activation functions, we choose

σ(x) =
ex − e−x

ex + e−x
.

The next result gives a parameterization for a function
satisfying C1) − C3) using a single hidden layer neural
network.

Lemma 1. (Parameterization of neural network satisfy-
ing the desired requirements): Consider a neural network
NN(x) : R 7→ R with one hidden layer of H neurons, with
output defined as

NN(x) =
H∑
h=1

whσ(x+ bh), (12)

where, σ(·) is the tanh activation function and (wh, bh)
denote the weight and bias associated with the h-th neuron. If
wh ≤ 0, for all h, then NN is continuous, differentiable, and
non-increasing. Further, if

∑H
h=1 |wh| ≤ W , then NN(x) ∈

[−W,W ], for all x ∈ R.

Proof. Continuity and differentiability of NN trivially stems
from that of σ. To establish the non-increasing property, we
take the derivative to obtain

dNN(x)

dx
=

H∑
h=1

wh
dσ(x+ bh)

dx
≤ 0,

where we use the fact that the derivative of tanh function
is always positive and that wh ≤ 0, for all h. Owing
to the above non-increasing property, the supremum (infi-
mum) of NN is attained for the limit x → −∞ (x →
∞). Substituting limx→−∞ σ(x) = −1 in (12) provides
limx→−∞NN(x) =

∑H
h=1 |wh| ≤ W , where wh ≤ 0 is

used. Similarly evaluating for the limiting case x→∞, one
obtains NN(x) ∈ [−W,W ], thus completing the proof.

Lemma 1 means that we can find the desired equi-
librium functions {φn}n∈C by training the parameters of

neural networks defined by (12). The requirement that the
range of φn belongs to Bn is satisfied by selecting W =
min{|qmin,n|, |qmax,n|}.

V. A LOCAL CONTROL SCHEME TO REACH DESIRABLE
EQUILIBRIA

In this section, we propose and analyze a local control
scheme that aims to steer the system to configurations
satisfying (10) and (6a). For each n ∈ C, consider the
following reactive power update rule

qn(t+ 1) = qn(t) + ε(φn(vn(t))− qn(t)), (13)

where vn(t) is determined by (6a), and ε is a suitable positive
number with 0 ≤ ε < 1. Notice that, if algorithm (13)
is initialized at qn(0) ∈ Bn, then qn(t) ∈ B for all t =
1, 2, . . . ; indeed, the new reactive power setpoint is a convex
combination of two numbers in Bn. Algorithm (13) is a
generalized version of the local scheme proposed in [5],
which, instead of the learned φn’s, considers linear functions.
The following result characterizes the convergence properties
of (13).

Proposition 1. (Asymptotic stability of equilibrium points):
Let the functions φn’s meet conditions C1)−C3), and define

M = max
n∈C

{
max
v∈R

∣∣∣∣dφndv
∣∣∣∣} .

If the stepsize parameter ε > 0 satisfies

ε ≤ min

{
1,

2

(1 + ‖X‖M)

}
, (14)

then the equilibria of the control rule (13) are asymptotically
stable. Moreover, if q] is an equilibrium point and v] =
v(q]) is its associated voltage, then (v]n, q

]
n) belongs to the

graph of φn for every n ∈ C.

Proof. To prove Proposition 1, it is convenient to ex-
press (13) in vectorial form as

qC(t+ 1) = (1− ε)qC(t) + εφ(vC(q(t)))

= f(qC(t)), (15)

where φ : RC → [qmin,qmax] collects all the φn’s, and f is
the operator

f : [qmin,qmax]→ [qmin,qmax]

qC 7→ (1− ε)qC + εφC(v(q)).

Using the chain rule and equation (6a), the Jacobian of f can
be expressed as

Jf = (1− ε)I + JφX, (16)

where Jφ is the Jacobian of φ and can be explicitly written
as

Jφ = diag

({
dφn(vn)

dvn

})
.

Notice that Jφ is a diagonal matrix with nonpositive entries,
because of property (i). Hence, (16) can be rewritten as

Jf = (1− ε)I− |Jφ|X. (17)
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Let (λi, ξi) be an eigenpair for |Jφ|X. Trivially, (1 − ε −
ελi, ξi) is an eigenpair for Jφ. Hence, for the asymptotic
stability of the equilibrium points of (13), we need to ensure
that

|1− ε− ελi| < 1

for any eigenvalue λi of |Jφ|X. The former can be split into
two inequalities. The first yields λi > −1, which is always
true since |Jφ|X is positive semidefinite. The second instead
reads ε(1 + λi) < 2 and, using Lemma 2 (in Appendix),
always holds if ε(1 + ‖X‖M) < 2 or, equivalently if

ε <
2

(1 + ‖X‖M)
.

Further, recall that the algorithm is defined for 0 < ε < 1.
Equation (14) then follows. Finally, if q] is an equilibrium
of (13), by definition from equation (15) we have

q] = (1− ε)q] + εφ(v(q]))

and thus
q] = φ(v(q]))

and (v]n, q
]
n) belongs to the graph of φn for every n ∈ C.

Remark 2. (Interpretation of the requirements on the
learned equilibrium functions): We explain here the reasons
for the requirements C1)−C3) on the equilibrium functions
{φn}n∈C . Constraining the range of each φn to Bn ensures
that the reactive power setpoints are always feasible and
avoids the use of projections in (13). The continuity, the dif-
ferentiability, and the monotonicity assumptions are instead
used in the proof of Proposition 1, i.e., these requirements
on the learning of the equilibrium functions guarantee the
stability of the closed-loop system. This is done at the cost
of potentially increasing the optimality gap. •

Remark 3. (Non-incremental vs. incremental control rules):
One could think to update the reactive power using the rule

qn(t+ 1) = φn(vn(t)), (18)

where vn(t) is determined by (6a). Following [18], we refer
to algorithms like (18) as non-incremental, because the new
setpoints are determined based on the local voltage without
explicitly exploiting a memory of past setpoints. These ap-
proaches can thus result in large variations in reactive-power
setpoints across timesteps. Instead, we refer to algorithms
like (13) as incremental because they compute small (as
determined by ε) adjustments to the current setpoints. Current
practice is indeed to update the reactive powers using non-
incremental algorithms, e.g., see [3] or the IEEE 1547
Standard [19]. It is trivial to see that equilibrium points
of (18) belongs to the graph of the equilibrium function,
too. The main issue is ensuring the convergence of (18):
several works [4], [5] provide conditions that guarantee the
stability of non-incremental algorithms, usually expressed as
bounds on the voltage function slope. Actually, one can show
that (18) converges if

M ≤ 1

‖X‖
. (19)
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Fig. 1. The IEEE 37-bus feeder.

To use (18), one would then need to additionally enforce (19)
in the learning process described in Section IV. The resulting
equilibrium function would then provide approximations of
the OPF solutions that are worsened because of the additional
restriction. By contrast, the incremental approach in (13) can
handle arbitrary finite maximum slopes M by choosing a
suitable stepsize ε that satisfies the condition (14). •

VI. NUMERICAL TESTS

We conduct a case study on a IEEE 37-bus feeder upon
removing regulators, incorporating five solar generators, and
converting it to its single-phase equivalent, see Fig. 1. These
five solar generators are the DERs that we intend to control.

Simulation setup. We use the Matlab-based OPF solver
Matpower [20] to compute both the exact optimal solution
of (P1) and the solution of the power flow equation. We
implement the neural networks using TensorFlow 2.7.0 and
conduct the training process in Google Colab with a single
TPU with 32 GB memory. The number of episodes and the
number of neurons H are 1000 and 200, respectively. The
neural networks are trained with the learning rate set to 0.01
using the Adam optimizer [21].

Real-world dataset. The feeder has 25 buses with non-
zero load. We extract minute-based load and solar generation
data for June 1, 2018, from the Pecan Street dataset [22],
and the first 75 non-zero load buses from the dataset are
aggregated every 3 loads and normalized to obtain 25 load
profiles. Similarly, we obtain 5 solar generation profiles for
the active power of DERs. The normalized load profiles for
the 24-hour period are scaled so that 97% of the total load
duration curve coincides with the total nominal load. This
scaling results in a peak aggregate load being 1.1 times the
total nominal load. We synthesize reactive loads by scaling
active demand to match the power factors of the IEEE 37-bus
feeder. The 5 DERs have different generation capabilities,
precisely, qmax = [0.4020 0.4020 0.4020 0.0500 0.0500]>

and qmin = −qmax. Voltage limits are set to vmax = 1.03
p.u. and vmin = 0.97 p.u. Fig. 2 shows the total demand and
solar generation across the feeder. Fig. 3 plots the learned
equilibrium function of DER 31, along with the exact optimal
reactive power setpoints obtained by solving by (P1).

Simulation results. We first verify the stability properties of

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Fig. 2. Minute-based data for the total (feeder-wise) solar power generation
and active power demand.

Fig. 3. Learned equilibrium function for DER 31 along with the dataset
points in purple.

the local control algorithm (13) stated in Proposition 1. Fig. 4
reports the evolution of the DERs’ reactive power injections
when loads are fixed. The power trajectories converge to
their final value. Next, we run the control algorithm (13)
in a scenario where loads are time-varying. Specifically,
we obtain loads by randomly perturbing the consumption
data used to learn the equilibrium functions. This can be
interpreted as having the data from the dataset prescribing
a day-ahead forecast, whereas their random perturbation act
as the true realization of the load. These loads are minute-
based and we consider 120 iterations of (13) per minute.
We compare the performance of the system when the agents
perform (13) with the one where control actions are not
taken. Fig. 5 reports the minimum voltage deviations, i.e.,
v − 1, and Fig. 6 the line power losses. In contrast to the
uncontrolled case, our approach brings the voltages back
to the desired voltage region, and significantly reduces line
losses.

VII. CONCLUSIONS

We have put forward a two-stage approach to the de-
sign of local volt/var control schemes capable of steering
a power distribution network towards desirable equilibria.
In the first stage, we learn the equilibrium function for
each DER bus that, given the local voltage, provides as an
output a reactive power setpoint. Points in the graph of the
equilibrium function represent approximations of solutions of
an OPF problem. We employ a neural network representation

Fig. 4. The convergence property of the local control schemes, where we
use the power data of the 1095-th minute and consider 600 iterations of
(13) with ε = 0.01.

Fig. 5. Comparison of the minimum voltage deviations between the pro-
posed approach and the uncontrolled case during time period [1095, 1105]
minutes with 120 iterations of (13) per minute and ε = 0.01.

that, by design, has the resulting equilibrium function be
differentiable, non-increasing (but without constraints on the
slope), and bounded. In the second stage, we devise an
incremental control algorithm whose equilibria belong to
the graph of the equilibrium function. The properties of
the learned equilibrium maps play a key role in showing
that the equilibria are asymptotically stable. Future research
directions include reducing the optimality gap, relaxing the
differentiability requirement on the equilibrium maps, and
extending the proposed framework to the more general
scenario where communication among neighboring agents
is allowed.

APPENDIX

Lemma 2. The matrix |Jφ|X is positive semidefinite. More-
over, if λmax is its maximum eigenvalue, it holds

λmax ≤ ‖X‖M. (20)

Proof. First, we show that X is a positive definite matrix.
Let (λi, ξi) be an eigenpair for |Jφ|X. Then, (λi,X

1
2 ξi) is

an eigenpair for the symmetric positive semidefinite matrix
X

1
2 |Jφ|X

1
2 . Indeed,

X
1
2 |Jφ|X

1
2X

1
2 ξi = X

1
2 |Jφ|Xξi = λiX

1
2 ξi

Hence, |Jφ|X is a positive semidefinite matrix, too. More-
over, using the triangle inequality and because Jφ is a

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Fig. 6. Comparison of the power losses between the proposed approach
and the uncontrolled case during time period [1095, 1105] minutes with
120 iterations of (13) per minute and ε = 0.01.

diagonal matrix, we have that

λmax =‖X 1
2 |Jφ|X

1
2 ‖ ≤ ‖X‖‖(|Jφ|)‖

≤ ‖X‖max
n∈C

{
max
v∈R

{
dφn(v)

dv

}}
= ‖X‖M.
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